Hessian Estimates for Special Lagrangian Equations with Critical and Supercritical Phases in General Dimensions

نویسندگان

  • YU YUAN
  • Y. YUAN
چکیده

We derive a priori interior Hessian estimates for special Lagrangian equation with critical and supercritical phases in general higher dimensions. Our unified approach leads to sharper estimates even for the previously known three dimensional and convex solution cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hessian and gradient estimates for three dimensional special Lagrangian equations with large phase

We obtain a priori interior Hessian and gradient estimates for special Lagrangian equations with phase larger than a critical value in dimension three. Gradient estimates are also derived for critical and super critical phases in general dimensions.

متن کامل

HESSIAN AND GRADIENT ESTIMATESFOR THREE DIMENSIONAL SPECIAL LAGRANGIAN EQUATIONS WITH LARGE PHASE By MICAH WARREN and YU YUAN

We obtain a priori interior Hessian and gradient estimates for special Lagrangian equations with phase larger than a critical value in dimension three. Gradient estimates are also derived for critical and super critical phases in general dimensions.

متن کامل

Explicit gradient estimates for minimal Lagrangian surfaces of dimension two

We derive explicit, uniform, a priori interior Hessian and gradient estimates for special Lagrangian equations of all phases in dimension two.

متن کامل

A Priori Estimate for Convex Solutions to Special Lagrangian Equations and Its Application

We derive a priori interior Hessian estimates for special Lagrangian equations when the potential is convex. When the phase is very large, we show that continuous viscosity solutions are smooth in the interior of the domain. c 2008 Wiley Periodicals, Inc.

متن کامل

Singular Solutions to Special Lagrangian Equations with Subcritical Phases and Minimal Surface Systems

We construct singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems. A priori estimate breaking families of smooth solutions are also produced correspondingly. A priori estimates for special Lagrangian equations with certain convexity are largely known by now.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014